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Monte Carlo simulations of the thermodynamic behavior of exchange graded ferromagnets
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In this work, we investigate the thermodynamic behavior of exchange graded ferromagnetic films using
Monte Carlo simulations. The systems are modeled by using a classical Heisenberg Hamiltonian, considering
only nearest neighbor exchange interactions and a linear depth-dependent effective magnetic exchange coupling
strength profile. Our quantitative assessment of the local physical quantities shows that each layer exhibits rather
isolated thermodynamic behavior, since both layerwise magnetization and susceptibility data indicate layer-
specific “local” Curie temperatures as a consequence of the depth-dependent change in the exchange coupling
strength. We also propose and evaluate a predictive formulation for such profiles of “local” Curie temperatures,
whose only input is the pre-selected exchange coupling profile. Having this very precise predictive tool, we
show how it can be used to obtain the temperature-dependent ferromagnetic state including its depth-dependent
magnetization profile at any given temperature. Thus, it is possible to predict which exchange profile will
produce a desired thermodynamic behavior and associated functionality, without the need to perform complex
experiments or time-consuming computations. With this study, we furthermore demonstrate that nonlocal aspects
of the thermodynamic state formation in graded magnetic materials are relevant only over very short length
scales, which is in outstanding qualitative agreement with prior numerical and experimental work.
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I. INTRODUCTION

In the past few decades, the understanding of magnetic
properties of multilayer structures had led to very significant
advances in materials research. For instance, starting in the
early 1990s, exchange spring ferromagnets were established
as an interesting and successful approach for materials design
[1]. The first studied exchange spring ferromagnet consisted
hereby of two exchange-coupled ferromagnetic layers, of
which one exhibited high magnetic anisotropy and low mag-
netic moment, while the other had low magnetic anisotropy
and high magnetic moment [1]. The coupled bilayer config-
uration led to an enhanced energy product if compared to
the values of the constituting layers [1–3]. The theoretical
description and further experimental realization of exchange
spring magnets provided a convenient model system for de-
veloping precise spatial control of the magnetic properties
in multilayer systems, given that the relative thicknesses of
the hard- and soft-magnetic layers could be controlled dur-
ing the deposition process [2–7]. Such spatial control has
later opened intriguing possibilities for improving magnetic
recording technologies [8–10].

Following this multilayer stacking approach, anisotropy
graded materials were proposed and experimentally realized,
driven by theoretical predictions that they should exhibit
even better performance [11–15]. Hereby, it was found that
a depth-dependent gradient of the magnetic anisotropy con-
stant (K) could be realized either by controllably tuning
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the thickness of the constituent layers or via heat treat-
ment during deposition [11–15]. However, these materials
did not achieve significant technological relevance because
of their fabrication complexity and their rather modest per-
formance gains. Nevertheless, the successful achievement of
vertically graded anisotropy profiles provided remarkable in-
sights towards unveiling novel functionalities associated with
the spatial control of the modified energetic terms in such
systems.

More recent studies have demonstrated that not only K gra-
dients can be achieved and tailored, but that it is also possible
to achieve continuous gradients in the exchange coupling con-
stant (J) along the growth direction in compositionally graded
layer systems [16–18]. Hereby, it is important to point out
that from a thermodynamic point of view, ferromagnetic (FM)
materials undergo a second-order phase transition at a single
temperature, the Curie temperature (Tc), which can be tuned
by alloying a FM material with a “nonmagnetic” material
[18–21]. In such alloys, a reduction in Tc is typically related
to an increase of the “nonmagnetic” material in the alloy
composition. However, in conventional itinerant ferromagnets
the resulting ferromagnetism is associated with a collective
electronic state that is more complicated than a mere combi-
nation of exchange coupled and uncoupled atoms, in which
the nonmagnetic atoms would be represented in a simplis-
tic fashion as nonexistent voids from a magnetic perspective
[22–25]. Therefore, it is actually more sensible to represent
a graded material via a depth dependent J profile rather than
by different local exchange coupling constants representing
individual atoms of different kinds, because this better reflects
the average local composition impact onto the ferromagnetic
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exchange, which is associated with composition gradients in
such alloys [18–21].

Recent studies have now shown that such materials actually
behave as if they were composed of virtually independent
ferromagnetic segments as far as their thermodynamic phase
is concerned, so that each local J value generates behavior
consistent with a “local” Curie temperature (T̃c) [18–21]. This
type of sample behavior allows one to map the temperature-
dependent ferromagnetic state onto a depth-dependent spatial
profile, as first confirmed both experimentally and theoreti-
cally in Ref. [18]. It was demonstrated that as a consequence
of the spatial nature of the ferromagnetic state, a quasi phase-
boundary emerges that separates ordered from disordered
magnetic regions within the same ferromagnetic sample,
which can be altered controllably and reversibly by temper-
ature and/or magnetic field [20]. Recent studies have explored
this functionality even in epitaxially grown samples, featuring
precisely engineered J profiles within a single crystal material
[18–21]. Due to the epitaxial nature of these samples, it is
then possible to achieve a well-defined in-plane easy axis, so
that their general magnetic behavior is very simple, and the
depth-dependent J-profile induced properties and their impact
onto the temperature dependent magnetization profile can be
very easily observed [19,26].

Most relevantly, these previous studies have demonstrated
that the thermodynamic state of the magnetization is domi-
nated by the local exchange coupling strength only and that
collective effects can be suppressed all the way down to a
length scale of about 2 nm or even less [18–21]. Such a
high degree of localization is counterintuitive if one con-
siders that ferromagnetism is a collective phenomenon and
that the studied systems furthermore utilized metallic band
ferromagnets with delocalized spin-polarized states [20]. This
thermodynamic property isolation represents a very relevant
result, given that the observed spatial localization limit lies
within the realm of nanotechnology applications today, such
as hard disk drive media structures [19,20]. Furthermore, it
has been demonstrated that temperature-controlled interlayer
exchange coupling in strong/weak ferromagnetic multilay-
ers can lead to tunable collective magnetization reversal that
could be utilized in novel devices based on thermally assisted
switching [27–29]. So, while the experimental work has been
very successful and seen substantial progress in the last few
years, theoretical efforts were lacking and have been limited
to mean-field type calculations only so far [18,21]. How-
ever, it is important to mention that there are other important
techniques for studying many-body physics problems, which
can be extended to the study of exchange graded materials,
such as the constant coupling approximation [30], cluster
methods [31], Green’s function theory [32–34], random-phase
and parametric approximations [35,36], and renormalization
group theory [37], for instance. Specifically, previous works
had studied the problem of calculating Curie temperatures
for layered structures, in which the (Heisenberg) intra- and
interlayer exchange interactions were allowed to differ, pay-
ing particular attention to weakly interacting layer systems
[32]. Moreover, a renormalization group theory approach on
the critical thermodynamics of inhomogeneous ferromagnetic
systems predicted, under specific conditions, an emerging

“local” critical behavior and thus a “local” critical temperature
in the studied system [37].

In this work, we explore Monte Carlo (MC) simula-
tions of exchange graded materials, given the superiority of
this computational method to provide accurate calculations
and relevant insights into the underlying physical effects
governing the macroscopic ferromagnetic state in nanoscale
materials [38,39]. Specifically, we aim to explore whether the
experimentally observed localized behavior can be corrobo-
rated by considering a nearest neighbor classical Heisenberg
model with a linear depth-dependent effective exchange cou-
pling strength profile to mimic the systematic compositional
changes in experimental samples. We also consider it worth-
while to study whether it might be feasible to derive a general
predictive description of local magnetization states from our
MC simulation results. This would enable anyone to make
accurate predictions of temperature dependent magnetiza-
tion profiles based upon the exchange coupling strength J
profiles alone, without having to rely upon complex and time-
consuming computations or experiments.

This paper is organized as follows: In Sec. II, we describe
details regarding the utilized model and the method that we
used to perform our simulations. In Sec. III A, we present
a qualitative agreement in between simulations and available
experimental data for the nanoscale modulated film structure
that was reported in Ref. [21]. In Sec. III B, we demonstrate
based upon our simulated data that a local T̃c and its profile is a
meaningful way to characterize the thermodynamic behavior
of graded samples. Furthermore, in Sec. III C, we explore
the effect of specific exchange profiles and gradient values
onto local magnetic properties. Section III D is devoted to
the development of an accurate predictive description of local
magnetic properties for exchange graded materials. In Sec. IV,
we summarize our work, provide conclusions, and give a
further outlook. Lastly, we include an Appendix to address
the finite-size effects in our simulations.

II. MODEL AND METHOD

In this work, we studied the thermodynamic behavior of
exchange graded samples by means of MC simulations. We
based our computations on samples exhibiting a fcc crystal
structure and a (111) surface orientation, whose schematic
representation is shown in the inset of Fig. 1. This specific
choice is based on the fact that we were aiming to compare our
results with prior computational and experimental findings,
and thus, we chose the crystal structure studied in Ref. [18].
It is important to mention that our simulations are based on a
three-dimensional system that has a one-dimensional gradient
along the vertical direction to ensure that the finite size of the
simulated samples would not interfere with the gradient itself.

Furthermore, the simple geometry employed in this work
will make the analysis straightforward and shall make it
possible to check the extent and limits of localization of
thermodynamic behavior in graded ferromagnetic materials.
Despite the fact that we consider only nearest neighbors to
be exchange coupled, we obtain a strong interlayer exchange
coupling for the utilized geometry, namely half of the total
exchange field originates from interlayer coupling, given that

094440-2



MONTE CARLO SIMULATIONS OF THE THERMODYNAMIC … PHYSICAL REVIEW B 103, 094440 (2021)

FIG. 1. Intralayer exchange coupling Jz as a function of depth z,
which is the geometry investigated in this work. Specifically, we are
displaying here a gradual 30% reduction in the exchange strength
along the z direction, with respect to Jmax = 1.0. Inset: schematic of
the fcc (111) lattice investigated here, shown for the specific case of
L = 4 and t = 6, with L being the lateral dimension and t the total
thickness of the sample in units of the number of layers. Periodic
boundary conditions (PBC) were applied in the x-y plane, whereas
free boundary conditions (FBC) were imposed along the z axis to
mimic surface effects.

6 of the 12 nearest neighbors are located in adjacent layers.
Thus, one would intuitively not expect that the thermody-
namic properties of such materials were strongly localized,
even if our approach of including only nearest neighbor ex-
change coupling is rather simplistic and not a fully realistic
description of graded materials. Despite this simplification,
local spin models have been successfully utilized in the past
for the computation of thermodynamic properties of confined
itinerant ferromagnets [22,24,38]. So, our approach seems
sensible despite its overall simplified assumptions.

As it has been asserted in previous studies, continuous and
controlled variations in composition can be utilized to induce
continuous changes in J [18–21]. To model and investigate
this here, we consider a linear-gradient exchange coupling
profile, with the effective intralayer exchange strength Jz be-
tween a spin and its nearest neighbors in the same layer given
by

Jz = (Jmax − Jmin)

t − 1
(z − 1) + Jmin, (1)

where t is the thickness of the sample in units of atomic layers
(z) so that 1 � z � t . For simplicity, but without impacting
the general validity of our approach, we choose Jmax = 1.0 so
that Jmin corresponds to the ratio of the lowest to highest Tc

of two uniform reference samples, representing the exchange
coupling strength on either side of our graded film. Thence,
Jmax − Jmin determines the absolute reduction in the exchange
strength along the vertical dimension, whereas the gradient
dJz/dz = (Jmax − Jmin)/(t − 1) determines the rate at which
Jz varies along the z axis, whose units are defined as the Jz

reduction (in percent of Jmax) per layer. Thus, our geometry
closely follows the linear-gradient exchange profile achieved
in Ref. [18].

Figure 1 shows the linear-gradient Jz profile obtained with
Eq. (1), featuring a gradual 30% reduction in the exchange
strength along the z direction, using Jmax as the base value.
The black circles denote Jmin and Jmax as the Jz values at the
surface layers of the graded sample, which also define the J
values for the two uniform reference samples that we have
computed. The interlayer exchange coupling strength [Jz(z+1)]
between a spin and its nearest neighbors in the neighboring
plane is considered to be the arithmetic average between Jz

and J(z+1), so that Jz(z+1) = (Jz + J(z+1))/2. The specific atoms
positions for the different constituting alloy materials and
atom type dependent exchange coupling constants are not
explicitly considered here. Therefore, Eq. (1), and the further
resulting interlayer coupling constants, can be understood as
representing an effective exchange coupling that is adequate
for each layer’s averaged alloy concentration, and thus, rudi-
mentary mimics itinerant exchange coupling aspects within
our local spin model. In our simulations, we included periodic
boundary conditions (PBC) in the x-y plane to approach trans-
lational invariance within the plane of each layer, whereas
free boundary conditions (FBC) were imposed along the z
axis in order to mimic surface effects on an actual thin film.
In the inset of Fig. 1, it can be seen that L determines the
system size in the x-y plane in a quadratic manner, and any
spurious finite-size effects should be related to this quantity.
We have explicitly verified the influence of L, which is de-
scribed in the Appendix, where we observe conventional finite
size scaling for the simulated graded samples. More impor-
tantly, the boundary conditions imposed in our computations
are intended to mimic the actual physical system, where the
thickness is far smaller than the lateral dimensions, resulting
in negligible in-plane demagnetization fields [19,20].

The magnetic behavior of the system was modeled using
a classical Heisenberg Hamiltonian that is considered to be
a mere superposition of layer-wise terms, including only ex-
change interactions between a spin and its nearest neighbors in
the same layer and its neighboring layers, as given by Eq. (2).

H = −
t∑

z=1

(∑
〈i, j〉

Jz(Si · S j ) +
∑
〈i,k〉

Jz(z+1)(Si · Sk )

)
(2)

where Si, S j , and Sk are the spins of the magnetic sites labeled
i, j, k with |Si| = |S j | = |Sk| = 1.0. The i, j, k indices mean
that the summations are taken to account for the interactions
of spin i with its j and k nearest neighbors in the same and
adjacent atomic plane. Please note that the first and second
terms in the first summation of Eq. (2) correspond to the intra-
and interlayer exchange interactions, respectively. However,
one should not add the interlayer exchange interactions for the
last layer because there is no layer t + 1, and thus Jt (t+1) = 0.

For simplicity, we have neglected anisotropy and Zeeman
energy terms in our MC simulations, given that exchange
interactions are dominant in conventional ferromagnets [38].
However, it is important to point out that the spin (size) that
we are using here is independent from the layer, which turns
out to be a sensible assumption to study the effect of the
exchange profile only. Albeit, this is actually not the same in
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experiments, because, when varying the alloy, it is not just J
or Tc that changes, but also the local saturation magnetization
(Ms), as it has been observed experimentally in Ref. [26] for
uniform CoRu-alloy films with different Ru concentrations.
Although we are not considering this particular aspect here,
it is worthwhile mentioning that, if an external field would
have been applied, the experimental Ms effect would have
been very relevant indeed, and one would have to consider a
layer-wise magnetic moment to characterize the influence of
the Zeeman term onto the thermodynamic behavior of graded
materials correctly. Moreover, we are primarily interested in
characterizing the expansion of the ferromagnetic state in the
presence of an already existing and thus stabilizing ferro-
magnetic entity, namely the initially ordered film segment.
As such, we can ignore formal problems that are related to
the lack of spontaneous symmetry breaking for T > 0 in
two-dimensional systems in the absence of anisotropy or dipo-
lar interactions that result from the Mermin-Wagner theorem
[40,41]. In practice, the finite size of our simulations produces
an energy gap in the spin wave spectrum that leads to a
stabilization of the ferromagnetic state.

The simulations presented in this work were carried out
using VEGAS [42], which is an open-source package for
the atomistic simulation of magnetic materials, using the MC
method based on the Metropolis algorithm. Furthermore, we
used an adaptive spin update policy for an optimal phase space
sampling of Heisenberg spin systems [43]. Simulations were
performed with temperatures ranging from kBT/Jmax = 4.5
down to kBT/Jmax = 0.5. In addition, we executed N×NMCS

Monte Carlo steps (MCS) for every temperature, rejecting
the first half of all MCS for relaxation, with NMCS = 2×104

and N = L×L×t being the total number of spins within
the sample. To compute statistical errors in the temperature-
dependent physical observables, we simulated five different
initializations per configuration, for every temperature and
every system explored in this work.

The volume averaged temperature-dependent magnetiza-
tion was computed as

M

Ms
= 1

N

∣∣∣∣∣
N∑
i

Si

∣∣∣∣∣. (3)

In addition, the layer-wise temperature-dependent magnetiza-
tion was computed as

M(z)

Ms
= 1

Nz

∣∣∣∣∣
Nz∑
i∈z

Si

∣∣∣∣∣, (4)

where Nz corresponds to the number of spins in each layer, i.e.,
Nz = L×L.1 Furthermore, by using the fluctuation-dissipation
theorem [46], we can compute the temperature-dependent

1As usual in MC simulations, the usage of |M| instead of M in
Eqs. (3) and (4) is related to the finite size of the simulated system,
for which magnetization reversal can occur occasionally, while it
should not occur in the thermodynamic limit [44]. As such, |M| is
used in our simulations to mimic the thermodynamic limit and avoid
the impact of finite activation barriers, which therefore stabilizes the
ferromagnetic state for kBT/J > 0 [45].

FIG. 2. Temperature-dependent magnetization curves for graded
and uniform systems. (a) Simulated by means of the MC method
for two uniform reference samples with Jmin and Jmax, respectively,
and a sample featuring a single-gradient magnetic exchange profile
exhibiting a 59% absolute reduction in the exchange strength along
the z direction, using Jmax = 1.0 as a base. (b) Adaptation of the
data reported in Ref. [21], for two uniform epitaxial Co1−xRux thin
films with x = 0.21 and x = 0.31, and another sample featuring a
nanometer-scale triangular wavelike concentration depth profile of
the same alloy. The modulated sample was engineered to have a
nominal modulation period of λ = 10 nm.

susceptibility, using

χ

M2
s

= 〈M2〉 − 〈M〉2

kBT
. (5)

Analogously, the layer-wise temperature-dependent suscepti-
bility was computed as

χ (z)

M2
s

= 〈M(z)2〉 − 〈M(z)〉2

kBT
. (6)

III. RESULTS AND DISCUSSION

A. Qualitative behavior

Figure 2(a) shows simulated M(T) data for a sample fea-
turing the linear-gradient Jz profile of Eq. (1), with t = 60 and
Jmax − Jmin = 0.59 (green squares). In this case, the chosen
value of Jmin = 0.41 corresponds to the ratio of the lowest to
highest Curie temperatures of two epitaxial Co1−xRux refer-
ence samples studied in Ref. [21]. This figure also shows the
simulated M(T) data for the two uniform reference samples
with Jmin and Jmax, respectively (blue stars and triangles).
These reference samples exhibit conventional ferromagnetic
phase transitions, following a typical power-law type behav-
ior, with the uniform sample with Jmax having a larger Tc

than the uniform sample with Jmin, whereas the curve of the
graded sample falls in between and exhibits a more gradual
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M(T) dependency. Such behavior is indicative of the fact that
the net magnetization of the graded sample can be consid-
ered as a superposition of nearly independent curves with
distinct T̃c [18–21]. This behavior reflects the fact that the
ferromagnetically ordered fraction of the film shrinks in vol-
ume with increasing temperature [18], which results from
the temperature-controlled displacement of an emergent quasi
phase-boundary separating ordered from disordered magnetic
regions within the sample [18–21]. Moreover, Fig. 2(a) shows
that the global Tc of the graded sample is not the same as the Tc

of the uniform reference sample with Jmax. This difference in
Tc is found to be non-negligible and will be analyzed in detail
later.

The data points presented in Fig. 2(b) are an adaptation
of those reported in Fig. 2 of Ref. [21]. This figure shows
the experimental M(T) data for a compositionally modulated
Co1−x(z)Rux(z) film (green squares), featuring a symmetric tri-
angular concentration depth profile, with a modulation period
of λ = 10 nm between x = 0.21 to x = 0.31. This figure
also shows the experimentally obtained M(T) data for uni-
form Co1−xRux reference samples with x = 0.31 and x =
0.21 (blue stars and triangles), which exhibit both low (Tc =
230 K) and high (Tc = 560 K) ferromagnetic phase transition
temperatures. It is worth mentioning that all these experimen-
tal samples were epitaxially grown, exhibiting an hcp crystal
structure and a (101̄0) surface orientation, so that they exhibit
a uniaxial in-plane easy axis, along which the experimental
M(T) data were measured. It can be seen from Fig. 2(b)
that the reference sample with the highest Ru concentration,
x = 0.31 (blue stars), exhibits a much lower Tc than does the
x = 0.21 sample (blue triangles), whereas the graded curve
(green squares) smoothly falls in between. Therefore, and
as previously indicated, this behavior is compatible with be-
ing a mere superposition of distinct curves, corresponding
to virtually independent ferromagnetic segments within the
sample [18–21]. Such a smoothly varying M(T) curve for
the modulated sample turns out to be very similar to what
would be expected from the M(T) behavior of a superposition
of independent alloy samples covering the total concentration
range [21]. It should be mentioned that the measurement tem-
peratures in Ref. [21] were restricted to T < 370 K to avoid
sample damage. Overall, Figs. 2(a) and 2(b) show an outstand-
ing qualitative agreement, which corroborates that our model
works despite its inherent simplifying assumptions.

B. Quantitative assessment of the “local physical observables”
in exchange graded materials

Prior studies using experiments and mean-field calcula-
tions have shown that graded materials behave very similar
to a mere superposition of independent ferromagnetic seg-
ments, as far as their thermodynamic magnetization state
is concerned [18,21]. Correspondingly, we investigated this
particular aspect by means of MC simulations, which are
more accurate than mean-field computations and generally not
prone to false predictions such as two-dimensional ferromag-
netism in Heisenberg model systems, for instance [47–49].
For this purpose, we used a sample featuring the single-
gradient Jz profile of Eq. (1), with t = 60 and Jmin = 0.7, thus
recreating a 30% absolute reduction in the exchange strength

FIG. 3. (a) Temperature-dependent susceptibility curves, which
we utilized to estimate T̃ χ

c , for some selected inner layers (z =
20, 30, 40) of a graded sample exhibiting Jmax − Jmin = 0.3 and t =
60. (b) Temperature-dependent magnetization curves for the same
selected inner layers shown in (a). The red dashed lines in (b) corre-
spond to fits to the Kuz’min functional form [Eq. (7)] with s = 1.757
and p = 5/2, which we used to estimate T̃ M

c . (c) Comparison be-
tween the two T̃c estimates: T̃ χ

c and T̃ M
c as a function of z.

along z, with respect to Jmax = 1.0. In the following, Jmin =
0.7 is generally utilized to mimic experimental observations
and mean-field calculations of Ref. [18]. However, there is
nothing unique about those values and our findings here are
generally applicable.

Figure 3(a) shows computed layer-specific susceptibility
vs. T dependencies according to Eq. (6) for some selected
inner layers of a t = 60 graded sample, in particular z = 20,
30, and 40. We observe that the curves for individual layers
all exhibit a sharp peak that is indicative of a phase transition
at the peak position temperature, and we see that the temper-
atures at which the peaks occur change with z. Specifically,
for larger z values, corresponding to higher Jz, the perceived
transition temperature T̃c increases as well. Notably, the χ (z)
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peaks show approximately the same height and width regard-
less of z, which therefore suggests that the system evolves in
a highly localized fashion and that neighboring layers do not
considerably influence the temperature-driven fluctuations of
the local M(z) data at different z values.

Other evidence of the localized behavior is presented in
Fig. 3(b), which shows local M(z) data for the same selected
layers of Fig. 3(a). Figure 3(b) shows that individual inner
layers of the graded sample exhibit the typical behavior of

the order parameter in ferromagnetic materials, displaying an
apparent power-law type of behavior, with each curve pointing
to very different local ordering temperatures T̃c at which the
magnetization approaches zero. Furthermore, it can be seen
that as z increases, T̃c increases as well, following the same
corresponding behavior depicted in Fig. 3(a). To analyze the
data quantitatively and specifically to extract the local order-
ing temperature T̃c, we have fitted our simulation results with
the functional form described by Kuz’min

M(z)

Ms
=

{[
1 − s

(
T

T̃ M
c

)3/2 − (1 − s)
(

T
T̃ M

c

)p]1/3
for T

/
T̃ M

c � 1

k for T
/

T̃ M
c > 1

, (7)

where p = 5/2 for most ferromagnets [50], while s, T̃ M
c , and

k are fitting parameters. In contrast to Kuz’min’s original
formulation, we added k as the magnetization offset for T >

T̃ M
c because our simulations exhibit a spurious “paramagnetic

magnetization”, which is associated with the finite size of
the lateral dimensions in our simulations (see Appendix).
The red dashed lines in Fig. 3(b) show the individual fits
to the local M(z) curves using Eq. (7),2 which demonstrates
that Eq. (7) is very well suited to describe the individual
temperature-dependent magnetization curves for a wide range
of the simulated temperatures. The fits only produce very
minor deviations in the immediate vicinity of T̃c, which is a
general MC simulation issue given the inherent rounding of
critical properties due to finite-size effects [51].

Overall, both Figs. 3(a) and 3(b) clearly indicate “local
thermodynamic behavior,” and therefore validate and substan-
tiate the concept of having a local T̃c as a meaningful quantity
to characterize the local magnetic behavior of the simulated
graded samples, which is also in agreement with renormal-
ization group theory predictions on simple inhomogeneous
ferromagnetic systems [37]. To continue the quantitative anal-
ysis of our simulation results, we considered two different
approaches to determine the numerical T̃c(z) profiles. The first
one consisted of using a polynomial fit of the layer-wise χ vs.
T curves for every given z and then selecting the temperature
at which the maximum occurred to define T̃ χ

c = T [χ (z)max].
The second approach consisted of estimating T̃ M

c by means of
the fitting parameter according to Eq. (7).

Figure 3(c) shows a comparison between the two ap-
proaches considered for obtaining T̃c(z). As previously
mentioned, T̃ χ

c (z) (depicted as red squares) is obtained as
the temperature at which the maximum of each χ (z) curve
occurs, whereas T̃ M

c (z) (depicted as open symbols) is obtained
as the fitting parameter of Eq. (7) for every local M(z) curve.

2The shape parameter s was computed as the mean value of the
best-fitted layer-specific s parameters at the inner portion of the
sample. We found 〈s〉 = 1.757 to be within the range of reported
values for experimental systems, and it was kept fixed throughout
further analysis [50]. Using a single set of values for p and s is
consistent with the underlying assumption that local M(T) data for
similar but different Jz should fall into the same universality class,
exhibiting the same critical exponents and thus the same shape [21].

Figure 3(c) shows that both distributions evolve predomi-
nantly in a linear fashion with z, at least for the interior of
the structure away from the surfaces. Near both surfaces, we
observe that T̃c(z) values exhibit a noticeable drop. This effect
is caused by the lack of nearest neighbors at the surfaces,
which reduces the total exchange coupling field, leading to
a reduced T̃c at and near both surfaces. From this figure, it
is evident that both distributions follow each other very well
except at the high Jz portion of the sample, where the T̃ χ

c (z)
data seem noisier than the T̃ M

c (z) profile. In fact, because of
the mapping of the temperature-dependent ferromagnetic state
onto the depth-dependent profile, it is also near this portion of
the sample where the largest local fluctuations occur. Hence,
around the high Jz portion of the sample is where the system
starts to order as a whole, at the very point where the sample
exhibits its largest T̃c value.

For our further analysis and discussion, we decided to use
the T̃ M

c (z) data for two reasons: (i) the T̃ M
c (z) distribution

is derived from local magnetization data, using all available
information for the entire range of simulated temperatures
and not just the ones near each T̃c(z) [as T̃ χ

c (z)]. Therefore,
it allows for a more robust and reliable T̃c analysis, which is
actually corroborated by Fig. 3(c), where the red data points
are indeed noisier, at least near the high T̃c(z) portion of the
sample. (ii) Besides simply simulating the thermodynamic
properties of graded materials, we also aim in this study at
determining a generally applicable predictive formulation that
can describe the spatial distribution of the ferromagnetic state
at any given temperature in any graded material. This can be
done better utilizing T̃ M

c because all temperature data actually
contribute to its determination. For both these reasons, it is
more sensible to use the layer-specific magnetization data and
apply Eq. (7) to determine the T̃ M

c (z) profiles.

C. Resulting T̃c profiles

Before further advancing the discussion of our results, it
is useful to clearly distinguish between two fundamentally
different finite-size effects in our simulated systems. Firstly,
there are unintended finite size effects due to the finiteness of
the lateral dimension of the sample, which are partially sup-
pressed by utilizing PBC within the x-y plane. These lateral
finite-size effects are inherent to all MC simulations and are
explicitly verified and discussed in the Appendix. The other
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FIG. 4. Simulation extracted layer-dependent T̃ M
c /T b

c profiles
(open symbols) in comparison to the corresponding exchange con-
stant profiles (solid red lines) for (a) t = 60, (b) t = 90, (c) t = 150,
(d) t = 210. The black and blue dashed lines represent the normal-
ized global Tc of the uniform and graded samples for every given t
value, respectively.

finite size effect that also occurs in real experimental samples
and is thus far more interesting is caused by the finite thick-
ness of the utilized film geometry. Thus, for the purpose of
testing the t dependence of the T̃ M

c (z) profiles, we performed
simulations for samples with varying t values ranging from
60 to 210 for L = 20. Figure 4 shows the resulting T̃ M

c /T b
c

profiles (open symbols) compared to the linear-gradient Jz of
Eq. (1) (red solid lines) for (a) t = 60, (b) t = 90, (c) t = 150,
and (d) t = 210, with T b

c being the Tc of a three-dimensional
uniform bulk system with Jmax. From this figure, it can be
deduced that already a simple and purely local Jz picture is
fairly accurate to characterize the T̃ M

c (z) profiles, except for
the near surface areas on the top and bottom of the graded
film. More importantly, it can be seen from the figure that as
t gets larger, the “surface error regions” becomes relatively

FIG. 5. Finite-thickness dependence of the global Tc for a uni-
form sample with Jmax, and two graded samples exhibiting two
different gradient values, whose quantities are defined in units of
Jz reduction (in percent of Jmax) per layer. The symbols are our
simulation results and the lines are a guide to the eye. The red dashed
line represents the T b

c of a uniform three-dimensional system with
Jmax.

smaller, showing that there is a noticeable t-dependence of
the T̃ M

c (z) profiles. This surface behavior is triggered by the
fact that some of the nearest neighbors are missing at the
surface because of the FBC imposed along the z axis, which
reduces the total exchange coupling energy for the surface
layers. Thus, less thermal energy will be required to break the
magnetic order at surfaces, which leads to reduced T̃c values at
and near both surfaces. This behavior propagates a few layers
deep into the interior of the sample until, at some point, the
exchange field is balanced, causing T̃ M

c (z) to mimic the local
exchange strength J profile exactly.

The global Tc of the graded systems investigated here is
equivalent to the maximum of T̃ M

c (z) since, at this tempera-
ture, the graded sample starts to order ferromagnetically. In
Fig. 4, we observe that the larger t is, the closer is the global
Tc to T b

c , which we have visualized by means of blue and
black dashed lines that approach each other as we increase
t . This increase of the global Tc is related to the lowering of
the gradient term dJz/dz = (Jmax − Jmin)/(t − 1) of Eq. (1),
which is the rate at which Jz varies along z. Thus, whenever
we increase t , there will be more layers with Jz values close
to Jmax at the high J end of the sample. This leads to an
increase in the global Tc of the whole system, since this is
a depth-averaged related quantity.

To explain the observed global Tc effect that occurs at the
high J end of the sample, Fig. 5 shows the finite-thickness
effect on the global Tc, computed for three L×L×d sized
samples. We considered one sample featuring a uniform Jmax

distribution (green stars) and two graded samples featuring
Jz profiles exhibiting a 30% absolute reduction in the ex-
change strength along the z axis, albeit each one having
different gradient values corresponding to dJz/dz = 1.58%
(dark blue squares) and dJz/dz = 0.51% (light blue circles),
whose quantities are defined in units of Jz reduction (in per-
cent of Jmax) per layer. Let us first turn the discussion to the
uniform case, from which one can see that a certain number of
layers is needed to come close to the bulk value T b

c , following
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a film thickness scaling law [52–56]. Now, when analyzing
the curves for the graded samples, it can be seen that they
exhibit the same saturation type behavior of the uniform case,
approaching the bulklike Tc as d increases. However, given
that now the exchange constant is going down with d , new
layers are less and less able to support the buildup of the
ferromagnetic state at the global Tc, so that the thickness-
dependent Tc saturates earlier and at a lower value if compared
to the uniform Jmax case. Furthermore, Fig. 5 also shows that a
steeper gradient leads to a lower saturation value of the global
Tc, which is exactly the type of behavior that we observe in
Fig. 4 for different simulated gradients. Thus, all aspects of the
T̃ M

c (z) profiles we observe in Fig. 4 can be well understood.
The here discussed global Tc effect also explains the behavior
observed in Fig. 2(a), where the Tc values of the uniform sam-
ple with Jmax (blue triangles) and the graded sample (green
squares) are not equal. It is also important to mention that we
find the local behavior to be very accurate, even though the
ratio of the intra- to the interlayer exchange coupling strength
is close to unity for our simulated structures in contrast to
previous studies that focused primarily on weakly interacting
layer systems [28].

D. Predictive formulation

Given the fact that the pure local J picture is already rea-
sonably close to predicting the local magnetic behavior and
associated T̃ M

c , we now aim at developing a predictive model
for M(z, T ), whose only input is the Jz profile and which
would not rely on doing full scale modeling or experiments. It
is sensible to consider that, in order to achieve a very precise
M(z, T ) description, it will be crucial to have a very precise
T̃ M

c (z) prediction from a given Jz profile. Hereby, Fig. 4 shows
us that a fully local picture is not completely accurate in
predicting the local T̃ M

c at and near the surfaces, where the
Jz change is largest, namely abrupt, so that nonlocal effects
occur most strongly. Also, Fig. 5 shows us that the global Tc of
graded samples depends on the buildup of an effective volume
that contributes to the aggregation of the ferromagnetic state.
So, one ought to consider a weighted average of Jz rather than
a purely local picture and also take into account the number
of nearest neighbors, which each spin actually has. Here,
we assume that the relevance of more distant layers decays
exponentially with ζ being the relevant decay length. Under
these assumptions the predicted local Curie temperature pro-
file T̃ p

c (z) (where the superscript p stands for ‘predictive’)
based solely on the Jz profile is

T̃ p
c (z) = T b

c

∑t
z′=1

Nz′

12 Jz′ exp
(−|z−z′ |

ζ

)
Jmax

∑t
z′=1 exp

(−|z−z′ |
ζ

) , (8)

where Nz′
is the number of nearest neighbors that a spin in the

z′ layer has. The 12 in the numerator corresponds to the coor-
dination number of the fcc crystal lattice. The summations are
taken over all t layers, considering only layers that are present
in the actual physical structure.

Figure 6(a) shows T̃ M
c (z) (open symbols) along with T̃ p

c (z)
for three arbitrary ζ values (dark blue, light blue, and light
green solid lines, respectively), given in units of layers. It is
observed from this figure that a high value of ζ = 20 (light

FIG. 6. (a) Simulation extracted T̃ M
c (z) profile for t = 90 as open

symbols, in comparison to the obtained T̃ p
c profile according to

Eq. (8) for several values of ζ as solid lines. (b) R2 vs ζ for Eq. (8)
to reproduce the simulation extracted T̃ M

c (z) profiles for different
t . The shaded region is a superposition of all standard deviation
regions, while the vertical dashed line represents the mean value of
the optimum ζ , i.e., ζ ∗ = 1.66 ± 0.03.

green) approaches a purely collective nature, with the rele-
vance of nonlocal properties being very significant over large
length scales. In the extreme case of even higher ζ values,
T̃c(z) would tend to converge to the T̃c of a uniform sample
with an average constant J . Therefore, the ζ = 20 curve does
not properly describe the simulated T̃ M

c data because the real
thermodynamic magnetic behavior of a graded sample is far
more local than this value assumes it to be. For the low ζ =
0.2 value (dark blue) in Fig. 6(a), the observed effect is just
the opposite, basically recreating a purely local description,
which evidently cannot describe the behavior at and near the
surfaces, where the Jz change is very abrupt. Instead, we can
see in Fig. 6(a) that for an intermediate yet still low value
ζ = 2, the obtained T̃ p

c curve describes the T̃ M
c (z) profile

quite well.
To determine the most suitable ζ value we computed T̃ p

c (z)
for values of ζ in the range of 1–3 and compared the results
quantitatively with our simulated T̃ M

c (z) data by determining
the coefficient of determination R2. Figure 6(b) displays the
resulting R2 values and shows that there is an optimum ζ value
for any given sample thickness t we computed. Furthermore,
we see that the resulting R2 values are very close to 1 and
more importantly, that the optimum ζ value (ζ ∗) is essentially
t-independent, since all the R2 curves exhibit a maximum
around the same ζ . The shaded region in Fig. 6(b) contains all
the ζ ∗ values, and the black dashed line represents the mean of
all determined ζ ∗ = 1.66 ± 0.03 with the error representing
the standard deviation of the mean value of the resulting ζ ∗ for
all t . It is relevant to point out that, as ζ ∗ is dominated by the
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FIG. 7. T̃c profiles for (a) t = 60, (b) t = 210; open symbols
represent the simulation extracted T̃ M

c (z) data, whereas the solid lines
show the profiles obtained via Eq. (8) using only a single value
ζ ∗ = 1.66 and the exchange constant profiles according to Eq. (1).

behavior at the surfaces, where changes in the exchange field
are abrupt, the ζ ∗ values for different t are very similar,
because the surface effects are similar in nature for all t ,
regardless of how steep or shallow the Jz distribution is in
the interior of the graded sample. Most relevantly, though,
the t-independent and small value of ζ ∗ = 1.66 confirms the
dominance of the local thermodynamic behavior in our simu-
lations. As such, the here determined ζ ∗ value is consistent
with prior observations on metallic band ferromagnets, for
which this length scale was reported to be of the order of
1–2 nm [21].

Figure 7 now shows T̃ M
c (z) (open symbols) along with T̃ p

c

(red solid lines) for the two limiting cases of our simulations,
namely (a) t = 60 and (b) t = 210 using Eq. (8) with fixed
ζ ∗ = 1.66 and the predefined Jz profiles. The plots confirm
that our general description can predict the T̃ M

c (z) profiles
very accurately regardless of t . From this, we can assert that
our formulation describes the buildup of the ferromagnetically
ordered portion of the sample very well. This alone, however,
does not guarantee that the overall resulting temperature de-
pendent magnetization profiles are well described, because
T̃ p

c only describes the temperature at which ferromagnetism
occurs but not its temperature evolution in the ferromagnetic
state. Thus, we have to investigate the predictive power and
accuracy for actual magnetization profiles next.

For this we utilize the calculated T̃ p
c (z) profiles that are

predicted from the Jz profile alone in conjunction with the
Kuz’min formula [Eq. (7)] and thus make a prediction of
M(z, T ) for any profile and at any temperature. Figure 8 shows
M(z, T ) profiles for a few selected temperatures, for the two
limiting cases in our simulations (a) t = 60 and (b) t = 210.
In this figure, the simulation data points are depicted as open

FIG. 8. Layer-dependent magnetization profiles for several con-
stant temperatures. The open symbols represent the simulated data
whereas the solid lines represent the predicted profiles, by obtaining
the local temperature-dependent magnetization curves using our for-
mulation, with s = 1.757, p = 5/2, together with the computed T̃ p

c

distribution, for (a) t = 60 and (b) t = 210. It is important to mention
that in (b), only a third of all the simulated data points are shown to
avoid an overlapping of the symbols.

symbols, whereas the predicted profiles are shown as solid
lines. In Figs. 8(a) and 8(b), we find that the simulated data
points are very well described by our formulation in almost
the entirety of the graded samples, even at and near both
surfaces, especially for low and intermediate temperatures.
Nonetheless, there are visible deviations in between pre-
dicted and simulated data for the largest temperature (orange
kBT/Jmax = 3.08 curves) at the high J portion of the samples,
while said deviations are found to be less significant for the
thicker sample. This comes from the fact that the T̃ p

c (z) profile
of the t = 60 sample exhibits slightly overestimated values on
the high z side, which are visible in Fig. 7(a), causing slightly
larger predicted M values in the high J portion of the graded
sample near its global Tc.

Figure 8 also shows that in these graded samples, one
encounters a quasi phase-boundary separating ordered from
disordered magnetic regions within the sample, in which the
temperature-dependent ferromagnetic state is mapped onto
a depth-dependent profile, as was predicted in prior work
[18–21]. We can also see from Fig. 8 that this quasi phase-
boundary is not infinitely sharp but has a certain extension,
due to the fact that ferromagnetically ordered layers induce via
interlayer exchange coupling a nonvanishing magnetization
into adjacent paramagnetic layers. Our predictive T̃ p

c (z) pro-
file description cannot reproduce this finite transition region,
so that we observe numerical deviations also in these portions
of the M(z, T ) profiles. However, the induced magnetization
falls off exponentially in the paramagnetic segments, so that
the numerical discrepancies in between the simulated and
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FIG. 9. Color-coded maps of layer and temperature dependent magnetization data for different film thickness t ; the figure shows the MC
simulated data [(a)–(f)], the predicted local magnetization data using the computed T̃ p

c profiles [(g)–(l)], and the absolute difference between
both sets of data [(m)–(r)]. The color bar in (f) applies to figures (a)–(l), whereas the color bar in (r) is valid for (m)–(r). Each column represents
the maps for one specific film thickness t , namely from left to right t = 60, 90, 120, 150, 180, and 210.

predicted magnetization profiles are rather modest. So, while
our estimates for the local T̃c have included some nonlocal
averaging to generate a predicted T̃c(z) profile, we are using
this profile subsequently in a purely local approach, leading
to a sharp interface in the M(z, T ) profiles, which does not
fully reflect the nature of the coupled systems. Regardless of
these rather small deviations, the formulation presented in this
work substantially supports the fact that the thermodynamic
magnetic behavior of exchange graded ferromagnets can be
well described in terms of local material properties [21].

To substantiate the reliability of the predictive description
we derived here, Fig. 9 shows color-coded maps for all our
simulation results [Figs. 9(a)–9(f)], the corresponding analytic
M(z, T ) profiles [Figs. 9(g)–9(l)], and the absolute difference
between both these maps [Figs. 9(m)–9(r)]. Hereby, every col-
umn in this figure represents a given t value. All Figs. 9(a) to
9(l) show strongly (blue) and weakly (red) magnetized regions
at low and high temperatures, being separated by a continuous
transition (white region) at intermediate temperatures. The
limit between the white and red regions represents the quasi
phase-boundary that emerges, which exhibits a z-dependent
transition temperature due to the depth-dependent Jz profile.
When comparing Figs. 9(a)–9(f) with Figs. 9(g)–9(l), it can be
seen that both data sets are strikingly similar in all cases. Upon
closer inspection, however, one can see that the simulated
data exhibit a slightly broadened transition from strongly to
weakly ordered regions, whereas the predicted data show a
more abrupt transition for all z, as discussed in conjunction
with Fig. 8. From the differences in between both data sets
displayed in Figs. 9(m)–9(r), it can be seen that our predictive
description performs remarkably well in the entire range of
simulated T and z, with absolute differences smaller than 2%
of Ms almost everywhere, except for slightly larger devia-
tions in the immediate vicinity of the quasi phase-boundary,
because our local M(z, T ) predictions are inherently limited

here. More importantly, there is no relevant t dependence of
the error results, which implies that our approach should work
(with its existing limits) for all kinds of gradient structures,
given that the absolute errors are virtually replicated in all
cases and thus are not gradient specific. It should also be
mentioned that Figs. 8 and 9 also utilize the quantity k, which
was defined in Eq. (7) as the remaining “paramagnetic mag-
netization” above each T̃c. Hereby, it is important to recall that
k is related to finite-size effects in MC simulations (see Ap-
pendix) and accordingly not a limit of our predictive approach.
Figure 9 also shows that a z layer at T > T̃c is not significantly
magnetized by an adjacent z layer at T < T̃c, so that each
z layer is found to exhibit a “unique and separate” thermo-
dynamic behavior, which is characterized by layer-specific
values of T̃c. The reason for this is that the interlayer exchange
cannot compensate for the high free energy cost to substan-
tially magnetize a paramagnetic layer [21]. Correspondingly,
the interlayer coupling does not lead to a large spatial spread
of the phase transition in the simulated materials despite its
overall very significant strength.

IV. CONCLUSIONS

This work represents the first analysis of magnetization
profiles in exchange graded materials based on MC sim-
ulations using a classical Heisenberg model with nearest
neighbor exchange interactions, with which we have corrobo-
rated prior experimental and mean-field calculation findings.
We have consequently verified, by using this more accurate
type of calculation, that the dominance of local behavior over
the collective nature of thermodynamic properties in exchange
graded materials exists down to very short length scales. After
assessing the outstanding qualitative agreement with available
experimental data, we could assert that the local description
is indeed fairly precise to characterize the magnetic behavior
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FIG. 10. Dependence of the magnetization on the lateral dimen-
sion of the system for the uniform Jmax sample together with the local
data of the z = 30 layer of the graded sample. Solid lines represent
magnetization data obtained for a system size of L = 20 and t = 60,
whereas dashed lines represent magnetization data for a system size
of L = 50 and t = 60.

of the simulated materials. Moreover, to continue our en-
deavor, based upon simulation results, we have developed a
predictive description to compute a refined local T̃c profile
that incorporated nonlocal thermodynamic aspects and which
allowed us to achieve a predictive closed-form derivation
of temperature-dependent ferromagnetic states at any given
temperature, based on the geometry of exchange strength J
profiles alone. The derivation of this predictive description
also verified that nonlocal nonuniformities are truly signifi-
cant only over very short length scales. This observation also
serves as an indicator for the inherent spatial localization limit
in the system, which is in very good agreement with previous
experimental estimates. The goal of the predictive description
that we derived here is not only to bypass experiments but also
the need for MC calculations, which are very time consuming.
With our closed-form description, it is now possible to know
beforehand which Jz distribution might produce the desired
thermodynamic behavior and associated functionality. In this
regard, it would be very interesting, for instance, to study
more complex exchange profiles, as well as more complex
spatial gradients other than only a one-dimensional axial vari-
ation, which could then be corroborated by other theoretical
approaches and experiments.
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APPENDIX

We have explicitly verified the finite-size effects, associ-
ated with the finiteness of the lateral dimension of the system,

FIG. 11. L-dependence of the k parameter used to account for
finite-size effects above T̃c for a uniform Jmax system and the z = 30
layer of the graded sample. The dashed lines are intended as a guide
to the eye.

i.e., finite L values according to Fig. 1, for individual layers
of the graded sample, which behave as the typical finite-size
effects on averaged M(T) data of uniform bulk systems. It
is important to bear in mind that the choice of a given L
relies on the computational time required to obtain dependable
simulation results, which increases significantly with size.
Therefore, one must assure that the system size is sufficiently
large to obtain dependable magnetic information while not
requiring a prohibitively large running time. Hereby, it is
important to mention that even when the lateral extent of the
here explored systems is smaller than their thickness, it does
not impact our general conclusions, given that the thickness
of individual segments that undergo a quasiphase transition
at a given temperature is actually limited to very few layers.
Correspondingly, the most relevant thermodynamic behavior
is dominated by an effective thin film segment that is substan-
tially thinner than its lateral sample size, even in the case of
the smallest L that we utilized.

For the explicit verification of the lateral finite-size effects,
we selected the z = 30 layer of a graded sample featuring
the linear-gradient magnetic exchange profile of Eq. (1) with
Jmax − Jmin = 0.3, t = 60, and L ranging from 20 up to 50 in
steps of �L = 5. Then, we compared the M(T) data of the
chosen individual layer of the graded sample with that of the
three-dimensional uniform bulk system with Jmax for the two
limiting L values in our simulations (L = 20 and L = 50).

Figure 10 shows the M(T) data for the uniform Jmax sample
(red lines) and the z = 30 layer of the graded sample (blue
lines) for L = 20 and L = 50 (solid and dashed lines, respec-
tively). From Fig. 10, it can be unambiguously seen that the
phase transition is always clearly identifiable, while the tran-
sition temperature itself is only modestly impacted by L. This
rather modest L dependence of Tc can be explained from the
fact that we are computing the magnetization as the absolute
value of the spin projections [Eq. (3)]. Thus, upon reducing L,
more and more long-range fluctuations are excluded from the
actual simulated system, so that the |M| value for any given
T modestly increases, as does the perceived Tc. Moreover, it
should be noted that, away from the global Tc and due to its
rather substantial thickness, the graded film is representative
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more of a three-dimensional ferromagnetic system. Most im-
portantly though, Fig. 10 shows that the behavior is essentially
the same for the individual layer of the graded and the uniform
film, albeit the graded film has a lower Tc, because for the layer
we consider here the local J is very relevantly reduced.

Figure 10 also shows for both graded and uniform samples
that even when T is significantly larger than Tc, there remains
a so-called “paramagnetic magnetization,” i.e., a small mag-
netization above Tc that has not completely averaged to zero
[57,58]. Instead, a value of δM is obtained, which depends on
both the size of the system and the “time” of the simulation
run (measured in MCS). However, we cannot make δM ar-
bitrarily small by increasing the simulation “time”. This can
be partially suppressed by using finite-size scaling theories;
however, such a discussion is not within the scope of our
study.

We introduce the k parameter in Eq. (7) to explicitly verify
these finite-size effects above T̃c, while obtaining a complete
description for the whole simulated temperature range. Based
on our results, we can assert that this k parameter is not
unique to graded materials but would have to be used for
any analytical data fit of a Kuz’min type formula to analyze
any M(T) resulting from MC simulation data. For instance,
Fig. 11 shows the L-dependence of the k parameter fitted
for the uniform sample and the z = 30 layer of the graded
system, plotted on a logarithmic scale. From this figure, it
can be seen that k ∝ 1/

√
N , with N = L×L×t , following the

standard behavior for this parameter [58], whereas the vertical
difference between the two lines comes from the fact that both
uniform and graded samples were simulated under the same
temperature range. Hence, the farther we are either from T b

c
or T̃c(z = 30), the lower the k parameter is [58].
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